Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichloridobis[1-(2-methylbenzimidazol-1-ylmethyl- κN^3)benzotriazole]mercury(II)

Jie Wu,* Jie Yang and Fang-fang Pan

Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: wujie@zzu.edu.cn

Received 17 June 2009; accepted 18 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.036; *wR* factor = 0.062; data-to-parameter ratio = 13.2.

In the title compound, $[HgCl_2(C_{15}H_{13}N_5)_2]$, the Hg^{II} atom is located on a twofold rotation axis and resides in a distorted tetrahedral coordination environment composed of two Cl atoms and two N atoms from two 1-(2-methylbenzimidazol-1-ylmethyl)benzotriazole ligands.

Related literature

For metal complexes of similar *N*-heterocyclic ligands, see: Fan *et al.* (2003); Hoskins *et al.* (1997); Makoto *et al.* (2005)

Experimental

Crystal data

[HgCl₂($C_{15}H_{13}N_5$)₂] $M_r = 798.10$ Monoclinic, C2/c a = 15.612 (3) Å b = 12.883 (3) Å c = 14.751 (3) Å $\beta = 97.49$ (3)°

Data collection

Rigaku Saturn724 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2006) $T_{min} = 0.380, T_{max} = 0.476$ (expected range = 0.334–0.418)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.062$ S = 1.092587 reflections $V = 2941.5 (11) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 5.46 mm⁻¹ T = 293 K 0.22 \times 0.18 \times 0.16 mm

14609 measured reflections 2587 independent reflections 2379 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$

196 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.57$ e Å⁻³ $\Delta \rho_{min} = -0.47$ e Å⁻³

Data collection: *CrystalClear* (Rigaku/MSC, 2006); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Professor Hou Hong-Wei of Zhengzhou University for his help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2600).

References

- Fan, J., Zhu, H. F., Okamura, T., Sun, W. Y., Tang, W. X. & Ueyama, N. (2003). *Inorg. Chem.* 42, 158–162.
- Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem. 109, 2430– 2432.
- Makoto, F., Masahide, T., Akiko, H. & Bruno, T. (2005). Acc. Chem. Res. 38, 371–380.

Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m829 [doi:10.1107/S1600536809023459]

Dichloridobis[1-(2-methylbenzimidazol-1-ylmethyl- κN^3)benzotriazole]mercury(II)

J. Wu, J. Yang and F. Pan

Comment

The complexation of metal ions by nitrogen heterocyclic compounds has been extensively studied. Owing to the unique ability of the heterocyclic compounds to form stable chelates with various coordiantion modes and its biological activity, many crystal ctructures have been determined (Fan, *et al.*, 2003; Hoskins, *et al.* 1997; Makoto,*et al.*,2005). *N*-(2-methylbenzoimidazol-3-yl-methyl)-benzotriazole, has the benzotriazole group and the benzoimidazole group and can offer possibilities to form complicated coordiantion compounds. However, the coordiantion chemistry and structural properties of metal complexes with the ligand has never been documented to data. In this paper, we reported the synthesis and crystal structure of the title compound, (I). In (I) (Fig. 1), the HgII atom is coordinated by two Cl atoms and two N atoms from the ligand to form a distorted tetrahedral coordination environment. Each ligand is coordianted to the Hg atom in a monodentate fashion. In the ligand, the benzotriazole group and benzotriazole group is bridged by a methylene, with an N—C—N angle of 111.3 (4)°. The benzotriazole group and the benzoimidazole group are almost perpendicular with each other, with the dihedral angle being 89.9°. Thus, two ligands are bridged by the Hg atom to form a cage-like compound.

Experimental

The ligand N-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole (0.04 mmol, 0.118 g) in MeOH (6 ml) was added dropwise to a solution of HgCl2 (0.4 mmol, 0.108 g) in methanol (3 ml). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week good quality colorless crystals were obtained from the filtrate and dried in air.

Refinement

H atoms were generated geometrically, with C-H = 0.96, 0.86 and 0.93Å for methyl, N and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = x times Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. View of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsolids.

$Dichloridobis [1-(2-methylbenzimidazol-1-ylmethyl- \kappa N^3) benzotriazole] mercury (II)$

Crystal data

[HgCl₂(C₁₅H₁₃N₅)₂] $M_r = 798.10$ Monoclinic, C2/c Hall symbol: -C 2yc a = 15.612 (3) Å *b* = 12.883 (3) Å c = 14.751 (3) Å $\beta = 97.49 (3)^{\circ}$ $V = 2941.5 (11) \text{ Å}^3$ Z = 4

Data collection

Rigaku Saturn724 diffractometer	2587 independent reflections
Radiation source: fine-focus sealed tube	2379 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}$
T = 293 K	$\theta_{\min} = 2.4^{\circ}$
dtprofit.ref scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006)	$k = -15 \rightarrow 15$
$T_{\min} = 0.380, T_{\max} = 0.476$	$l = -17 \rightarrow 17$
14609 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.062$	$w = 1/[\sigma^2(F_o^2) + (0.0229P)^2 + 4.6614P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2587 reflections	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
196 parameters	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
Determine the state of the stat	

Primary atom site location: structure-invariant direct Extinction correction: none methods

 $F_{000} = 1560$ $D_{\rm x} = 1.802 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4239 reflections $\theta = 2.1 - 29.1^{\circ}$ $\mu = 5.46 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.22\times0.18\times0.16~mm$

$R_{\rm int} = 0.051$	
$\theta_{\text{max}} = 25.0^{\circ}$	
$\theta_{\min} = 2.4^{\circ}$	
$h = -18 \rightarrow 18$	
$k = -15 \rightarrow 15$	
$l = -17 \rightarrow 17$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Hg1	0.5000	-0.10389 (2)	0.2500	0.04638 (11)
C11	0.62989 (9)	-0.19849 (10)	0.30815 (8)	0.0585 (4)
N1	0.4757 (2)	0.0231 (3)	0.3545 (2)	0.0389 (9)
N2	0.4113 (2)	0.1501 (3)	0.4213 (2)	0.0380 (9)
N3	0.3561 (2)	0.3232 (3)	0.4176 (2)	0.0439 (10)
N4	0.3539 (3)	0.3999 (4)	0.4808 (3)	0.0606 (12)
N5	0.3651 (3)	0.4882 (4)	0.4425 (3)	0.0642 (13)
C1	0.3170 (3)	0.0391 (4)	0.3110 (4)	0.0577 (14)
H1A	0.3243	-0.0205	0.2737	0.087*
H1B	0.2941	0.0956	0.2728	0.087*
H1C	0.2778	0.0226	0.3538	0.087*
C2	0.4021 (3)	0.0696 (4)	0.3614 (3)	0.0392 (11)
C3	0.5386 (3)	0.0762 (3)	0.4139 (3)	0.0359 (11)
C4	0.6271 (3)	0.0600 (4)	0.4337 (3)	0.0436 (11)
H4	0.6547	0.0066	0.4064	0.052*
C5	0.6722 (3)	0.1269 (4)	0.4956 (3)	0.0513 (13)
H5	0.7317	0.1191	0.5095	0.062*
C6	0.6311 (3)	0.2054 (4)	0.5377 (3)	0.0541 (13)
H6	0.6637	0.2481	0.5799	0.065*
C7	0.5436 (3)	0.2220 (4)	0.5189 (3)	0.0452 (12)
H7	0.5163	0.2750	0.5469	0.054*
C8	0.4984 (3)	0.1560 (3)	0.4564 (3)	0.0348 (10)
C9	0.3430 (3)	0.2172 (4)	0.4447 (3)	0.0471 (12)
H9A	0.2878	0.1926	0.4145	0.057*
H9B	0.3414	0.2146	0.5102	0.057*
C10	0.3696 (3)	0.3647 (4)	0.3355 (3)	0.0420 (11)
C11	0.3763 (3)	0.3232 (5)	0.2497 (3)	0.0568 (14)
H11	0.3719	0.2523	0.2381	0.068*
C12	0.3900 (3)	0.3936 (5)	0.1833 (4)	0.0636 (16)
H12	0.3946	0.3697	0.1246	0.076*
C13	0.3973 (3)	0.5008 (6)	0.2009 (4)	0.0688 (17)
H13	0.4074	0.5456	0.1539	0.083*
C14	0.3898 (3)	0.5404 (5)	0.2845 (4)	0.0642 (16)

supplementary materials

H14	0.3943	0.6114	0.2959	0.077*
C15	0.3752 (3)	0.4707 (4)	0.3524 (3)	0.0496 (13)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.05294 (19)	0.03316 (15)	0.05032 (18)	0.000	-0.00348 (13)	0.000
Cl1	0.0714 (9)	0.0507 (8)	0.0509 (7)	0.0232 (7)	-0.0012 (7)	0.0044 (6)
N1	0.039 (2)	0.034 (2)	0.044 (2)	0.0053 (18)	0.0057 (18)	-0.0056 (17)
N2	0.035 (2)	0.039 (2)	0.040(2)	0.0014 (17)	0.0063 (18)	-0.0022 (18)
N3	0.050 (2)	0.045 (2)	0.037 (2)	0.0158 (19)	0.0079 (19)	-0.0040 (19)
N4	0.080 (3)	0.058 (3)	0.045 (2)	0.023 (3)	0.011 (2)	-0.010 (2)
N5	0.085 (4)	0.048 (3)	0.060 (3)	0.014 (3)	0.006 (3)	-0.003 (2)
C1	0.042 (3)	0.063 (4)	0.064 (3)	-0.001 (3)	-0.005 (3)	-0.013 (3)
C2	0.040 (3)	0.040 (3)	0.038 (3)	-0.005 (2)	0.004 (2)	0.001 (2)
C3	0.041 (3)	0.034 (2)	0.032 (2)	-0.002 (2)	0.003 (2)	-0.0002 (19)
C4	0.036 (3)	0.046 (3)	0.049 (3)	0.004 (2)	0.007 (2)	-0.004 (2)
C5	0.038 (3)	0.057 (3)	0.058 (3)	-0.006 (2)	0.005 (2)	-0.001 (3)
C6	0.054 (3)	0.057 (3)	0.049 (3)	-0.010 (3)	-0.001 (3)	-0.010 (3)
C7	0.051 (3)	0.039 (3)	0.046 (3)	0.001 (2)	0.007 (2)	-0.006 (2)
C8	0.040 (3)	0.032 (2)	0.032 (2)	-0.001 (2)	0.005 (2)	0.001 (2)
C9	0.044 (3)	0.056 (3)	0.045 (3)	0.012 (2)	0.018 (2)	0.000 (2)
C10	0.034 (3)	0.054 (3)	0.039 (3)	0.009 (2)	0.007 (2)	-0.001 (2)
C11	0.053 (3)	0.074 (4)	0.043 (3)	0.009 (3)	0.007 (3)	-0.004 (3)
C12	0.047 (3)	0.107 (5)	0.036 (3)	0.005 (3)	0.004 (2)	-0.002 (3)
C13	0.043 (3)	0.094 (5)	0.068 (4)	0.001 (3)	0.001 (3)	0.033 (4)
C14	0.050 (3)	0.064 (4)	0.076 (4)	0.006 (3)	-0.001 (3)	0.016 (3)
C15	0.047 (3)	0.054 (3)	0.047 (3)	0.014 (3)	0.002 (2)	0.003 (3)

Geometric parameters (Å, °)

2.313 (3)	C4—C5	1.380 (7)
2.313 (3)	C4—H4	0.9300
2.4248 (13)	C5—C6	1.387 (7)
2.4248 (13)	С5—Н5	0.9300
1.311 (5)	C6—C7	1.375 (6)
1.405 (5)	С6—Н6	0.9300
1.357 (6)	С7—С8	1.378 (6)
1.392 (5)	С7—Н7	0.9300
1.450 (5)	С9—Н9А	0.9700
1.362 (5)	С9—Н9В	0.9700
1.366 (6)	C10-C15	1.389 (7)
1.444 (6)	C10-C11	1.390 (6)
1.293 (6)	C11—C12	1.372 (7)
1.377 (6)	C11—H11	0.9300
1.488 (6)	C12—C13	1.407 (8)
0.9600	С12—Н12	0.9300
0.9600	C13—C14	1.354 (8)
	$\begin{array}{c} 2.313 (3) \\ 2.313 (3) \\ 2.4248 (13) \\ 2.4248 (13) \\ 1.311 (5) \\ 1.405 (5) \\ 1.357 (6) \\ 1.392 (5) \\ 1.362 (5) \\ 1.366 (6) \\ 1.444 (6) \\ 1.293 (6) \\ 1.377 (6) \\ 1.488 (6) \\ 0.9600 \\ 0.9600 \end{array}$	2.313 (3) $C4-C5$ 2.313 (3) $C4-H4$ 2.4248 (13) $C5-C6$ 2.4248 (13) $C5-H5$ 1.311 (5) $C6-C7$ 1.405 (5) $C6-H6$ 1.357 (6) $C7-C8$ 1.392 (5) $C7-H7$ 1.450 (5) $C9-H9A$ 1.362 (5) $C9-H9B$ 1.366 (6) $C10-C15$ 1.444 (6) $C10-C11$ 1.293 (6) $C11-H11$ 1.488 (6) $C12-C13$ 0.9600 $C13-C14$

C1—H1C	0.9600	С13—Н13	0.9300
C3—C4	1.391 (6)	C14—C15	1.387 (7)
C3—C8	1.395 (6)	C14—H14	0.9300
N1—Hg1—N1 ⁱ	89.97 (18)	C6—C5—H5	119.1
N1—Hg1—Cl1 ⁱ	112.90 (10)	C7—C6—C5	121.8 (5)
N1 ⁱ —Hg1—Cl1 ⁱ	108.78 (10)	С7—С6—Н6	119.1
N1—Hg1—Cl1	108.78 (10)	С5—С6—Н6	119.1
N1 ⁱ —Hg1—Cl1	112.90 (10)	C6—C7—C8	116.6 (4)
Cl1 ⁱ —Hg1—Cl1	119.65 (7)	С6—С7—Н7	121.7
C2—N1—C3	106.1 (4)	С8—С7—Н7	121.7
C2—N1—Hg1	126.6 (3)	C7—C8—N2	132.3 (4)
C3—N1—Hg1	126.7 (3)	C7—C8—C3	122.3 (4)
C2—N2—C8	107.5 (4)	N2—C8—C3	105.4 (4)
C2—N2—C9	126.3 (4)	N3—C9—N2	111.3 (4)
C8—N2—C9	126.2 (4)	N3—C9—H9A	109.4
N4—N3—C10	110.1 (4)	N2—C9—H9A	109.4
N4—N3—C9	118.7 (4)	N3—C9—H9B	109.4
C10—N3—C9	131.2 (4)	N2—C9—H9B	109.4
N5—N4—N3	108.8 (4)	Н9А—С9—Н9В	108.0
N4—N5—C15	108.4 (4)	N3—C10—C15	103.8 (4)
C2—C1—H1A	109.5	N3—C10—C11	134.1 (5)
C2—C1—H1B	109.5	C15—C10—C11	122.1 (5)
H1A—C1—H1B	109.5	C12—C11—C10	115.7 (5)
C2—C1—H1C	109.5	C12-C11-H11	122.2
H1A—C1—H1C	109.5	C10—C11—H11	122.2
H1B—C1—H1C	109.5	C11—C12—C13	122.2 (5)
N1—C2—N2	112.3 (4)	C11—C12—H12	118.9
N1—C2—C1	125.1 (4)	C13—C12—H12	118.9
N2—C2—C1	122.6 (4)	C14—C13—C12	121.6 (5)
C4—C3—C8	120.6 (4)	C14—C13—H13	119.2
C4—C3—N1	130.7 (4)	С12—С13—Н13	119.2
C8—C3—N1	108.7 (4)	C13—C14—C15	117.1 (6)
C5—C4—C3	116.9 (4)	C13-C14-H14	121.4
C5—C4—H4	121.6	C15-C14-H14	121.4
C3—C4—H4	121.6	N5-C15-C14	129.9 (5)
C4—C5—C6	121.8 (5)	N5-C15-C10	108.8 (4)
C4—C5—H5	119.1	C14—C15—C10	121.3 (5)
N1 ⁱ —Hg1—N1—C2	86.5 (4)	C9—N2—C8—C7	-0.3 (8)
Cl1 ⁱ —Hg1—N1—C2	-24.0 (4)	C2—N2—C8—C3	0.3 (5)
Cl1—Hg1—N1—C2	-159.3 (3)	C9—N2—C8—C3	-180.0 (4)
N1 ⁱ —Hg1—N1—C3	-83.5 (3)	C4—C3—C8—C7	0.2 (7)
Cl1 ⁱ —Hg1—N1—C3	166.0 (3)	N1—C3—C8—C7	179.9 (4)
Cl1—Hg1—N1—C3	30.7 (4)	C4—C3—C8—N2	179.9 (4)
C10—N3—N4—N5	0.3 (6)	N1—C3—C8—N2	-0.3 (5)
C9—N3—N4—N5	-178.6 (4)	N4—N3—C9—N2	-128.3 (4)
N3—N4—N5—C15	-0.3 (6)	C10—N3—C9—N2	53.1 (7)
C3—N1—C2—N2	0.0 (5)	C2—N2—C9—N3	-116.4 (5)

supplementary materials

Hg1—N1—C2—N2	-171.7 (3)	C8—N2—C9—N3	63.9 (6)
C3—N1—C2—C1	-179.6 (4)	N4—N3—C10—C15	-0.2 (5)
Hg1—N1—C2—C1	8.7 (7)	C9—N3—C10—C15	178.5 (5)
C8—N2—C2—N1	-0.2 (5)	N4—N3—C10—C11	-179.2 (5)
C9—N2—C2—N1	-179.9 (4)	C9—N3—C10—C11	-0.4 (9)
C8—N2—C2—C1	179.4 (4)	N3-C10-C11-C12	179.7 (5)
C9—N2—C2—C1	-0.3 (7)	C15-C10-C11-C12	0.8 (7)
C2—N1—C3—C4	180.0 (5)	C10-C11-C12-C13	0.3 (8)
Hg1—N1—C3—C4	-8.4 (7)	C11-C12-C13-C14	-1.0 (8)
C2—N1—C3—C8	0.2 (5)	C12-C13-C14-C15	0.4 (8)
Hg1—N1—C3—C8	171.9 (3)	N4-N5-C15-C14	-179.2 (5)
C8—C3—C4—C5	-0.8 (7)	N4-N5-C15-C10	0.1 (6)
N1—C3—C4—C5	179.5 (4)	C13—C14—C15—N5	-180.0 (5)
C3—C4—C5—C6	1.2 (7)	C13—C14—C15—C10	0.8 (8)
C4—C5—C6—C7	-1.1 (8)	N3-C10-C15-N5	0.0 (5)
C5—C6—C7—C8	0.5 (7)	C11-C10-C15-N5	179.2 (4)
C6—C7—C8—N2	-179.7 (5)	N3-C10-C15-C14	179.4 (4)
C6—C7—C8—C3	0.0 (7)	C11-C10-C15-C14	-1.4 (8)
C2—N2—C8—C7	-180.0 (5)		
(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,			

Symmetry codes: (i) -x+1, y, -z+1/2.

